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1. Introduction

Semileptonic decays of heavy-light mesons play a central role in the study of flavour physics

both on the experimental and theoretical sides. The extraction of the Cabibbo-Kobayashi-

Maskawa [1, 2] matrix element Vcb, for example, requires the experimental measurement

of the decay rate of the process B → D(∗)ℓνℓ and the theoretical calculation of the hadron

matrix elements of the flavour changing weak currents. A non-perturbative estimate of the

matrix elements can be obtained by lattice QCD. Furthermore, within the heavy quark

effective theory (HQET) it has been shown [3] that the semileptonic transitions between

heavy-light mesons can be parametrized, at leading order of the expansion in the inverse

heavy quark mass, in terms of a universal form factor known as Isgur-Wise function.

The Isgur-Wise function is universal in the sense that it describes any semileptonic decay

mediated by heavy-heavy weak currents regardless of the flavour of the initial and final

heavy quarks and of the spins of the mesons. From the phenomenological point of view it

is relevant to know the size of the corrections to the Isgur-Wise limit and to establish at

which order the heavy quark expansion has to be truncated to produce useful results down

to the charm mass.

Matrix elements of the vector heavy-heavy currents between pseudoscalar meson states

are parametrized in terms of two form factors. In the case of the light leptons ℓ = e, µ,

the differential decay rate of the process B → Dℓνℓ is proportional to the square of a

particular linear combination of the two, GB→D. The BaBar and Belle collaborations have
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already measured [4, 5] the branching ratios of the processes B → D(∗)τντ and a future

measurement of the differential decay rate will make possible to extract Vcb also from this

channel. In this case a separate knowledge of the form factors is required, both in the

Standard Model and in its minimal extensions (see for example refs. [6, 7]). In ref. [8]

we have already shown our final results for GB→D by focusing on their phenomenological

implications without giving all the details of the calculation. Here we present detailed re-

sults of continuum and chiral extrapolations and separate estimates of the two independent

form factors for several values of the initial and final heavy quark masses together with an

analysis of the infinite heavy quark mass limit. In addition, we make a prediction for the

ratio of the differential decay rates of the processes B → Dℓνℓ with ℓ = τ and ℓ = e, µ.

The simulation of relativistic heavy quarks with masses ranging from the physical b

mass down to the physical c mass has been performed by using the step scaling method

(SSM) [9], already applied successfully to the determination of heavy quark masses and

heavy-light meson decay constants [10 – 12]. The SSM allows to reconcile large quark

masses with adequate lattice resolution and large physical volumes. The two form factors

have been calculated for different values of the momentum transfer by making use of flavour

twisted boundary conditions [13], that shift the discretized set of lattice momenta by an

arbitrary amount (see also [14 – 16]).

The plan of the paper is as follows. In section 2 we introduce the form factors in the

continuum theory and re-derive the Luke’s theorem [17]. In sections 3 and 4 we set up the

lattice notation and describe the calculation. In sections 5 we discuss the results at finite

volumes while in section 6 we show our final results. We draw our conclusions in section 7.

2. Form factors

The semileptonic decay of a pseudoscalar meson into another pseudoscalar meson is medi-

ated by the vector part of the weak V −A current. The corresponding matrix element can

be parametrized in terms of two form factors,

〈Mf | V µ |Mi〉 = (pi + pf )µ f i→f
+ + (pi − pf )µ f i→f

−

or, equivalently,

〈Mf | V µ |Mi〉
√

MiMf

= (vi + vf )µ hi→f
+ + (vi − vf )µ hi→f

− (2.1)

where vi,f = pi,f/Mi,f are the 4-velocities of the mesons. The relations between the hi→f
±

and the f i→f
± parametrizations are given by

hi→f
± =

(Mi + Mf )f i→f
± + (Mi − Mf )f i→f

∓

2
√

MiMf

f i→f
± =

(Mi + Mf )hi→f
± − (Mi − Mf )hi→f

∓

2
√

MiMf
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In the rest of this paper we work in the hi→f
± parametrization that, as it will emerge from

the discussion below, is more convenient for the study of the dependence of the form factors

upon the masses of the initial and final heavy quarks.

The form factors depend upon the masses of the parent and daughter particles and

upon w ≡ vf · vi

hi→f
± (w) ≡ h±(w,Mi,Mf ),

Time reversal and hermiticity imply that hi→f
+ and hi→f

− are real. Furthermore they imply

that hi→f
+ is even under the interchange of the initial and final states while hi→f

− is odd,

h+(w,Mi,Mf ) = h+(w,Mf ,Mi), h−(w,Mi,Mf ) = − h−(w,Mf ,Mi) (2.2)

In eq. (2.1) one can consider the limit in which both meson masses go to infinity at fixed

4-velocity; the left hand side is well defined in this limit and, consequently, also the form

factors. It is thus legitimate to make a change of variables from the meson masses to the

parameters ε+ and ε−, defined as

ε+ =
1

Mf
+

1

Mi
, ε− =

1

Mf
− 1

Mi

Expressed as functions of the new variables, hi→f
± ≡ h±(w, ε+, ε−) are well defined at

ε+ = 0 and ε− = 0 and can be expanded in power series around these points. The symmetry

properties of eq. (2.2) force the odd(even) powers of ε− to vanish into the expansion of

hi→f
+ (hi→f

− ), i.e.

h+(w, ε+, ε−) = h+(w, 0, 0)+ε+
∂h+(w, 0, 0)

∂ε+
+

ε2
+

2

∂2h+(w, 0, 0)

∂ε2
+

+
ε2
−

2

∂2h+(w, 0, 0)

∂ε2
−

+ . . .

h−(w, ε+, ε−) = ε−
∂h−(w, 0, 0)

∂ε−
+

ε−ε+

2

∂2h−(w, 0, 0)

∂ε−∂ε+
+ . . . (2.3)

In the elastic case, when the initial and final mesons coincide, hi→i
− vanishes and the vector

current is conserved. The conservation of the vector current implies that hi→i
+ (w = 1) =

1. This condition, inserted in the previous equations, translates into a condition on the

derivatives of hi→i
+ with respect to ε+

∂nh+(w = 1, 0, 0)

∂εn
+

= 0

We thus expect that, for values of w ≃ 1 the corrections proportional to ε+ will be rather

small while the ones proportional to ε−, not constrained by the vector symmetry, can

play a role also at zero recoil. This expectation is confirmed by our numerical results (see

section 6).

The discussion above is a re-derivation of the ”Luke’s theorem” [17]. The theorem,

originally derived by using HQET arguments, states that hi→i
+ it is not affected by first

order corrections at zero recoil. In our language

h+(w = 1, ε+, ε−) = 1 +
ε2
−

2

∂2h+(w = 1, 0, 0)

∂ε2
−

+ . . . (2.4)
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Eqs. (2.3) confirm the analysis of the subleading corrections to the form factors that has

been carried out by the authors of ref. [18] within HQET1. The additional symmetries of

the static theory imply relations among the coefficients appearing in eqs. (2.3) and the

corresponding ones arising in the case of vector-pseudoscalar and vector-vector transitions.

In particular, hi→i
+ is proportional at leading order to the Isgur-Wise function [3].

In ref. [8] we have shown the results concerning the form factor GB→D(w) that enters

into the semileptonic decay rate of a B meson into a D meson in the approximation of

massless leptons ℓ = e, µ,

dΓB→Dℓνℓ

dw
= |Vcb|2

G2
F

48π3
(MB + MD)2M3

D(w2 − 1)3/2
[

GB→D(w)
]2

1 ≤ w ≤ M2
B + M2

D

2MBMD

This form factor is related to hi→f
+ (w) and hi→f

− (w) by

Gi→f (w) = hi→f
+ (w) − Mf − Mi

Mf + Mi
hi→f
− (w)

In the case ℓ = τ the mass of the lepton cannot be neglected and the differential decay rate

is given by [19, 6]

dΓB→Dτντ

dw
=

dΓB→D(e,µ)νe,µ

dw

(

1 − r2
τ

t(w)

)2 {(

1 +
r2
τ

2t(w)

)

+
3r2

τ

2t(w)

w + 1

w − 1

[

∆B→D(w)
]2

}

rτ =
mτ

MB
, r =

MD

MB
, t(w) = 1 + r2 − 2rw,

1 ≤ w ≤ M2
B + M2

D − m2
τ

2MBMD

In this work we provide an estimate of the function ∆B→D(w) appearing in the previous

relations, including values at w > 1. Its expression in terms of hi→f
+ (w) and hi→f

− (w) is

given by

∆i→f (w) =
1

Gi→f (w)

[

1 − r

1 + r
hi→f

+ (w) − w − 1

w + 1
hi→f
− (w)

]

=

(

1 − r

1 + r
− w − 1

w + 1

hi→f
− (w)

hi→f
+ (w)

)(

1 − 1 − r

1 + r

hi→f
− (w)

hi→f
+ (w)

)−1

(2.5)

In the elastic case ∆i→f(w) vanishes identically and, in the approximation in which hi→f
− (w)

is much smaller than hi→f
+ (w), it is very well approximated by its static limit

∆i→f (w) ≃ 1 − r

1 + r
, r =

Mf

Mi
(2.6)

1Some care is needed when eqs. (2.3) are compared with the corresponding results of ref. [18]. Indeed

eqs. (2.3) are the result of a Taylor expansion and the coefficients do not depend upon ε+,− and, conse-

quently, upon the meson masses. Eqs. (B1) of ref. [18] are expansions in inverse powers of the quark masses

that depend upon the renormalization scale as well as the coefficients. This dependence cancels at any

given order.
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3. Lattice observables

We have carried out the calculation within the O(a) improved Schrödinger Functional

formalism [20, 21] with T = 2L and vanishing background fields. Physical units have

been set by using the Sommer’s scale and fixing r0 = 0.5 fm [22 – 24]. In order to set the

notations, we introduce the following source operators

Osr =
a6

L3

∑

y,z

ζ̄s(y)γ5ζr(z), O′
sr =

a6

L3

∑

y,z

ζ̄ ′s(y)γ5ζ
′
r(z)

where s and r are flavour indexes while ζ and ζ ′ are boundary fields at x0 = 0 and x0 = T

respectively. The bulk operators are defined according to

A0
sr(x) = ψ̄s(x)γ5γ

0ψr(x),

Psr(x) = ψ̄s(x)γ5ψr(x)

A0
sr(x) = A0

sr(x) + acA
∂0 + ∂∗

0

2
Psr(x)

V µ
sr(x) = ψ̄s(x)γµψr(x),

T µν
sr (x) = ψ̄s(x)γµγνψr(x)

Vµ
sr(x) = V µ

sr(x) + acV
∂ν + ∂∗

ν

2
T µν

sr (x)

The improvement coefficient cA has been computed non-perturbatively in ref. [25]. Regard-

ing cV , we have used the perturbative result from ref. [26] but its actual value influences

our results at the level of a few per mille.

The quark masses have been defined through the PCAC relation. We have calculated

the following correlation functions

fA
sr(x0) = −

∑

x

〈OrsA
0
sr(x)〉 fP

sr(x0) = −
∑

x

〈OrsPsr(x)〉

and defined

mAWI
r =

1

2fP
rr

[

∂0 + ∂∗
0

2
fA

rr + acA∂0∂
∗
0fP

rr

]

, amV WI
r =

1

2

[

1

kr
− 1

kc

]

where a is the lattice spacing, kr is the hopping parameter of the r quark and kc is the

critical value of the hopping parameter. The renormalization group invariant (RGI) quark

masses have been obtained by the following relation

mr = ZM

[

1 + (bA − bP ) amV WI
r

]

mAWI
r (3.1)

The combination bA − bP of the improvement coefficients of the axial current and pseu-

doscalar density has been computed non-perturbatively in [27, 29]. The factor ZM is known

with very high precision in a range of inverse bare couplings that does not cover all the

values of β used in our simulations. We have used the results reported in table 6 of ref. [28]

to parametrize ZM in the enlarged range of β values [5.9, 7.6].
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In order to define on the lattice the matrix elements of the vector current between

pseudoscalar meson states, we need to introduce other two correlation functions,

Fµ
i→f (x0;pi,pf ) =

a3

2

∑

x

〈Oli Vµ
if (x) O′

fl〉, f f
A(x0,pf ) = −

∑

x

〈OlfA0
fl(x)〉

where i and f are the heavy flavour indexes and l is the light one. The external momenta

have been set by using flavour twisted b.c. for the heavy flavours; in particular we have

used

ψi,f (x + 1̂L) = eiθi,f ψi,f (x), p1 =
θi,f

L
+

2πk1

L
, k1 ∈ N

and ordinary periodic b.c. in the other spatial directions and for the light quarks. We have

worked in the Lorentz frame in which the parent particle is at rest (pi = 0). In this frame

w is simply expressed in terms of the ratio between the energy and the mass of the daughter

particle w = Ef/Mf . The matrix elements of V µ have been defined by the following ratios

〈V µ〉i→f
D1 ≡ 〈Mf | V µ |Mi〉D1 ≡ 2

√

MiEf

Fµ
i→f (T/2;0,pf )

√

F0
i→i(T/2;0,0)F0

f→f (T/2;pf ,pf )
(3.2)

that become the physical matrix elements in large volumes where single state dominance

is a good approximation. An alternative definition of the matrix elements (D2), which

reduces to the previous one (D1) in the infinite volume and at zero lattice spacing, can be

obtained by considering

〈V µ〉i→f
D2 ≡ 〈Mf | V µ |Mi〉D2 ≡ 2

√
MiEff f

A(T/2,0)
√

Mff f
A(T/2,pf )

Fµ
i→f (T/2;0,pf )

√

F0
i→i(T/2;0,0)F0

f→f (T/2;0,0)

(3.3)

In eqs. (3.2) and (3.3) the renormalization factors ZV and ZA cancel in the ratios together

with the factors containing the improvement coefficients bV and bA.

By calculating the following ratio

xf =
F1

f→f (T/2;0,pf )

F0
f→f (T/2;0,pf )

=
〈Mf | V1 |Mf 〉
〈Mf | V0 |Mf 〉

=

√
w2 − 1

w + 1

we have defined w, as well as meson masses and energies, entirely in terms of three point

correlation functions. This definition of w is noisier than the one that can be obtained in

terms of ratios of two point correlation functions; however it leads to exact vector current

conservation when Mf = Mi and reduces the final statistical error on the form factors.

The two definitions of the matrix elements lead to two definitions of the form factors that,

in terms of 〈V 0〉D and 〈V 1〉D, are expressed by

hi→f
+ (w) =

〈V 0〉i→f

2Mi
√

r

{

1 +

√
w2 − 1

w + 1

〈V 1〉i→f

〈V 0〉i→f

}

(3.4)

hi→f
− (w) =

〈V 0〉i→f

2Mi
√

r

{

1 +
w + 1√
w2 − 1

〈V 1〉i→f

〈V 0〉i→f

}

(3.5)

Gi→f (w) =
2r

1 + r

〈V 0〉i→f

2Mi
√

r

{

1 +
wr − 1

r
√

w2 − 1

〈V 1〉i→f

〈V 0〉i→f

}

, r =
Mf

Mi
(3.6)
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Figure 1: Extrapolations to the continuum limit of GB→D(w). The data correspond to ml = ms,

to the definition D1 and to the data sets L0A, L0B and L0C.

The last two equations are not defined at w = 1; this is due to the second term in the

parenthesis of eq. (3.5) and (3.6) that we extrapolate at zero recoil before calculating

hi→f
− (w = 1) and Gi→f (w = 1).

4. The step scaling method

The SSM has been introduced to cope with two-scale problems in lattice QCD. In the

calculation of heavy-light meson properties the two scales are the mass of the heavy quarks

(b,c) and the mass of the light quarks (u,d,s). Here we consider the generic form factor

F i→f = {hi→f
+ , hi→f

− , Gi→f} as a function of w, the volume L3 and fix the meson states by

the corresponding heavy and light RGI quark masses that, being extracted by the lattice

version of the PCAC relation, are not affected by finite volume effects (see eq. 3.1).

The first step of the finite volume recursion consists in calculating the observable

F i→f (w;L0) on a small volume, L0, which is chosen to accommodate the dynamics of

– 7 –
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heavy quarks with masses ranging from the physical value of the charm mass up to the

mass of the bottom. As in our previous work we fixed L0 = 0.4 fm. We have simulated

five different heavy quark masses mi,f = {m1
h,m2

h,m3
h,m4

h,m5
h}, five different momenta

θ1 = {θ1
1, θ

2
1, θ

3
1, θ

4
1, θ

5
1} (see eq. (3.2)) and three light quark masses ml = {m1

l ,m
2
l ,m

3
l }.

A first effect of finite volume is taken into account by evolving the results from L0 to

L1 = 0.8 fm through the factor

σi→f (w;L0, L1) =
F i→f (w;L1)

F i→f (w;L0)

computed for each value of w and for each value of the light quark mass. The crucial point

is that the step scaling functions are calculated by simulating heavy quark masses smaller

than the b-quark mass. The step scaling functions at mi ≃ mb and mf ≃ mc are obtained

by directly simulating mf both on L0 and on L1 and by a smooth extrapolation in 1/mi.

Extrapolating the step scaling functions is more advantageous than extrapolating the

form factors. This can be easily understood by relying on HQET expectations (see also

eq. (2.3)),

σi→f (w;L0, L1) =
F (0)→f (w;L1)

[

1 + F (1)→f (w;L1)
mi

+ . . .
]

F (0)→f (w;L0)
[

1 + F (1)→f (w;L0)
mi

+ . . .
]

=
F (0)→f (w;L1)

F (0)→f (w;L0)

[

1 +
F (1)→f (w;L1) − F (1)→f (w;L0)

mi
+ . . .

]

≡ σ(0)→f (w;L0, L1)

[

1 +
σ(1)→f (w;L0, L1)

mi
+ . . .

]

In the previous relations the superscripts in parenthesis, (n), mark the order of the expan-

sion in the inverse heavy quark mass. The subleading correction to the step scaling func-

tions is the difference of two terms and vanishes in the infinite volume, σ(1)→f (w;L0, L1) =

F (1)→f (w;L1) − F (1)→f (w;L0), becoming smaller and smaller as the volume is increased.

This matches the general idea that finite volume effects, measured by the σ’s, are almost

insensitive to the high energy scale.

We also compute the step scaling functions of the elastic form factors hi→i
+ at mi ≃ mb

by extrapolating the corresponding results from smaller heavy quark masses. Also in this

case the σ’s are expected to be almost flat with respect to 1/mi.

In order to remove the residual finite volume effects we iterate the procedure described

above once more passing from L1 to L2 = 1.2 fm. Our final results are obtained from

F i→f (w;L2) = F i→f (w;L0) σi→f (w;L0, L1) σi→f (w;L1, L2) (4.1)

5. Finite volume results

5.1 Small volume

The small volume L0 = 0.4 fm has been simulated by using three different values of the

lattice spacing (see table 2). The small physical extent of the volume allowed us to simulate

– 8 –
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Figure 2: Light quark mass dependence of hB→D
+ (w; L0) (left) and of hB→D

−
(w; L0) (right). The

different sets of points correspond to different values of ml ranging from about ms to about ms/4.

The data are in the continuum limit and correspond to the definition D1.
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Figure 3: Continuum extrapolation of σi→i
+ (w = 1.1; L0, L1) (left) and σi→i

+ (w = 1.1; L1, L2)

(right) at the heaviest values of the heavy quark masses (mi ≃ mb/4 and mi ≃ mb/2 respectively).

The data correspond to ml = ms, to the definition D1 and to the data sets L1A/L0a, L1B/L0b

(left) and L2A/L1a, L2B/L1b (right).
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Figure 4: Step scaling functions of hi→c
+ (left) and hi→c

−
(right) as functions of 1/mi for the first

evolution step (from L0 to L1). The black vertical lines represent the physical points mi = mc and

mi = mb. The data are in the continuum and chiral limits and correspond to the definition D1.

relativistic heavy quarks with masses ranging from around mb down to mc. We have

computed the form factors hi→f
+ , hi→f

− and Gi→f for all the combinations of heavy and

light quark masses and for five different values of the momentum transfer.

In figure 1 we show the continuum extrapolations of GB→D(w). The points in this

figure correspond to ml = ms but similar figures can be obtained for the other values of
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Figure 5: Step scaling functions of hi→f
+ (left) and hi→f

−
(right) at fixed mf as functions of 1/mi

for the second evolution step (from L1 to L2). The black vertical lines represent the physical points

mi = mc and mi = mb. The data are in the continuum and chiral limits and correspond to the

definition D1.
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Figure 6: Comparison of the two definitions of hB→D
+ (w; L) at L0 = 0.4 fm (left) and at L2 = 1.2 fm

(right). The data are in the continuum and chiral limits.
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Figure 7: hD→D
+ (w = 1.05; L) (left) and hD→D

+ (w = 1.10; L) (right) as functions of the volume.

The black points have been obtained through the step scaling recursion while the red points (slightly

displaced on the x-axis to help the eye) are the result of a direct simulation on the biggest volume.

The data are in the continuum and chiral limits and correspond to the definition D1.

the light and heavy quark masses and for the other form factors.

In figure 2 we show hB→D
+ (left) and hB→D

− (right) as functions of w for the three

different values of light quark masses that we have simulated (ranging from about ms

to ms/4). As we have anticipated in ref. [8], we find that the F ’s behave as constants
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Figure 8: In the left plot it is shown hB→f
+ (w) in the infinite volume limit as a function of w

for different values of the final heavy quark mass. The right plot shows hB→f
−

(w) for the same

combinations of heavy quark masses.
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Figure 9: The left plot shows hB→B
+ (w) and hD→D

+ (w): in the range 1 ≤ w ≤ 1.05 the two

elastic form factors are indistinguishable within the quoted errors while hB→D
+ (w) in figure 8 shows

appreciable corrections from the Isgur-Wise limit, in particular at zero recoil. The right plot shows

hi→f
+ at zero recoil (w = 1) as a function of ε2

−
(actually (1/mi − 1/mf)2 ∝ ε2

−
, mi,f being the RGI

heavy quark masses): the solid line has been obtained by fitting the data according to eq. (2.4).

with respect to ml within the statistical errors. This happens for each combination of

heavy quark masses and for each value of the lattice spacing. Nevertheless we make a

linear extrapolation to reach the chiral limit; the resulting error largely accounts for the

systematics due to these extrapolations. In the following our results include the mild chiral

extrapolation.

5.2 Steps

The parameters of the simulations of the evolution steps are given in tables 4 and 6 . We

have been simulating at two different lattice spacings by limiting the maximum value of

the heavy quark mass to mi ≃ mb/2 for the first step and to mi ≃ mb/4 for the second.

In figure 3 we show the dependence upon the lattice spacing of the step scaling functions

σi→f
+ (w = 1.1;L0, L1) (left) and σi→f

+ (w = 1.1;L1, L2) (right) in the worst case (largest
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value of heavy quark masses). In general our results are consistent with a scaling regime

within a few per mille accuracy and the continuum step scaling functions of tables 5 and 7

have been obtained by averaging the results at the two lattice spacings.

In figure 4 we can test our hypothesis on the low sensitivity of the step scaling functions

upon the high energy scale. The figure shows the step scaling functions of the form factors

hi→c
+ (left) and hi→c

− (right) as functions of 1/mi. In both cases the dependence upon mi

is hardly appreciable and in the case of hi→c
+ the σ’s are very close to one while hi→c

− is

affected by stronger finite volume effects. We obtain the values at mi = mb by linear fits.

In figure 5 we plot the same quantities as in figure 4 for the second evolution step (from

L1 to L2, see table 6). Also in this case the step scaling functions depend very smoothly

upon 1/mi.

5.3 Consistency checks

In this section we illustrate the results of two checks that we have done in order to convince

ourselves on the consistency of the step scaling procedure. As already discussed in section 3,

we have used two different definitions of the matrix elements and, consequently, of each

form factor. In figure 6 we show the comparison of hB→D
+ (w;L) at L0 = 0.4 fm (left) and

at L2 = 1.2 fm (right). We see that the results, while differing at finite volume, converge

to common values after the step scaling procedure. This makes us confident of a correct

accounting of finite volume effects.

A second check of the whole procedure, and in particular of the continuum limit of the

step scaling functions, can be obtained by considering the elastic form factor hD→D
+ (w;L)

at fixed w as a function of L. The point is that the charm quark mass has been simulated

directly on each physical volume and, in particular, on the biggest one. In figure 7 we fix

w = 1.05 (left) and w = 1.10 (right) and see that the step scaling recursion (black points)

converge to the result obtained directly at L2 = 1.2 fm (red points, slightly displaced to

help the eye) making us confident of a correct accounting of the cutoff effects and, in

particular, of a correct estimate of the error on the continuum step scaling functions.

Our final results are obtained by averaging over the two definitions and by combining in

quadrature statistical errors with the systematic ones that we estimate from the dispersion

between D1 and D2.

6. Final results

In this section we discuss our final results in the continuum, chiral and infinite volume

limits (table 1). In order to establish the onset of the static limit approximation we plot in

figure 8 the form factor hB→f
+ (w) as a function of w for different values of the final heavy

quark mass. The right plot shows hB→f
− (w) for the same combinations of heavy quark

masses. We see that the corrections to the static limits of both hB→f
+ (w) and hB→f

− (w)

are of the order of 2% at the charm mass. For heavy quark masses bigger than mb/2 the

corrections are almost negligible (below 1%).

Eqs. (2.3) and (2.4) predict that the convergence toward the static limit is faster in

the case of the elastic form factors with respect to the ones having mi > mf . This happens
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Figure 10: The figure shows the function ∆B→D(w) in the chiral, continuum, and infinite volume

limits. The solid line correspond to the static limit result, (MB −MD)/(MB + MD), and has been

drawn by using the experimental determinations of the meson masses.

i → f w G h+ h− ∆

1.00 1.000(00) 1.000(00)

1.03 0.971(07) 0.971(07)

D → D 1.05 0.955(06) 0.955(06)

1.10 0.916(09) 0.916(09)

1.20 0.828(20) 0.828(20)

1.00 1.000(00) 1.000(00)

1.03 0.974(07) 0.974(07)

B → B 1.05 0.952(07) 0.952(07)

1.10 0.903(16) 0.903(16)

1.20 0.794(34) 0.794(34)

1.00 1.026(17) 1.017(03) -0.011(23) 0.466(26)

1.03 1.001(19) 0.986(08) -0.018(19) 0.465(25)

B → D 1.05 0.987(15) 0.970(07) -0.023(16) 0.464(24)

1.10 0.943(11) 0.928(10) -0.024(12) 0.463(24)

1.20 0.853(21) 0.835(21) -0.018(13) 0.463(23)

Table 1: Physical results. Average of the two definitions D1 and D2.

because near the point at zero recoil the subleading corrections to hi→f
+ (w) are proportional

to the square of the difference of the initial and final meson masses. Figure 9 clearly shows

that this happens in practice. Indeed, in the left plot we see that the elastic form factor

hD→D
+ (w) is much closer to the static limit (very well approximated by hB→B

+ (w)) with

respect to the form factor hB→D
+ (w), the one relevant into the calculation of Vcb shown in

figure 8. In the right plot of figure 9 we show how well eq. (2.4) is approximated by our

numerical data. The fit is performed on the slope while the intercept is fixed to one.

The QCD form factor hi→f
+ (w) is related to the renormalization group invariant HQET

Isgur-Wise function, ξ(w), by the following relation [30, 31]

hi→f
+ (w) =

[

1 + β+(mi,mf ;w) + γ+(mi,mf ;w) + O(m−2
i,f )

]

ξ(w)

where the γ+ term accounts for non-perturbative power corrections proportional to the in-
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β T × L3 Ncnfg k θ

L0A 7.300 48 × 243 277 0.124176 0.000000

0.124844 0.953456

0.128440 1.201080

0.129224 2.042983

0.131950 2.573569

0.134041

0.134098

0.134155

L0B 7.151 40 × 203 224 0.122666 0.000000

0.123437 0.953456

0.127605 1.201079

0.131511 1.719170

0.131686 2.488490

0.134277

0.134350

0.134422

L0C 6.963 32 × 163 403 0.120081 0.000000

0.120988 0.953456

0.126050 1.201079

0.131082 1.719170

0.131314 2.488490

0.134526

0.134614

0.134702

Table 2: Table of lattice simulations of the small volume.

i → f w G h+ h−

1.00 1.000(00) 1.000(00)

1.03 0.979(02) 0.979(02)

D → D 1.05 0.967(03) 0.967(03)

1.10 0.942(04) 0.942(04)

1.20 0.894(06) 0.894(06)

1.00 1.000(00) 1.000(00)

1.03 0.980(02) 0.980(02)

B → B 1.05 0.969(03) 0.969(03)

1.10 0.940(05) 0.940(05)

1.20 0.882(09) 0.882(09)

1.00 1.025(17) 1.013(03) -0.020(37)

1.03 1.009(14) 0.992(03) -0.032(29)

B → D 1.05 1.000(13) 0.980(04) -0.040(23)

1.10 0.976(11) 0.953(04) -0.048(17)

1.20 0.929(09) 0.903(06) -0.053(12)

Table 3: Small volume results, L0 = 0.4 fm. Results corresponding to the definition D1.

verse of the quark masses while the β+ term accounts for perturbative radiative corrections.

In the case of the elastic form factor hi→i
+ (w) at the highest value of the simulated heavy

quark masses, i.e. the bottom quark mass, power corrections are completely negligible in
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β T × L3 Ncnfg k θ

L0a 6.737 24 × 123 608 0.12490 0.000000

0.12600 0.953456

0.12770 1.201080

0.12979 1.719172

0.13015 2.488491

0.13430

0.13460

0.13490

L0b 6.420 16 × 83 800 0.120674 0.000000

0.122220 0.953456

0.124410 1.201079

0.127985 1.719172

0.128066 2.488491

0.134304

0.134770

0.135221

L1A 6.737 48 × 243 260 0.12490 0.000000

0.12600 2.042983

0.12770 2.573569

0.12979 3.438340

0.13015 4.976980

0.13430

0.13460

0.13490

L1B 6.420 32 × 163 350 0.120674 0.000000

0.122220 2.042983

0.124410 2.573569

0.127985 3.438340

0.128066 4.976980

0.134304

0.134770

0.135221

Table 4: Table of lattice simulations of the first step.

our data as clearly emerges from figures 8 and 9:

γ+(mb,mb;w) ∼= 0

hB→B
+ (w) = [1 + β+(mb,mb;w)] ξ(w)

The function β+(mb,mb;w) depends logarithmically upon the bottom mass through αs(mb)

and vanishes at zero recoil where the renormalized Isgur-Wise function is identically equal

to one like the relativistic QCD elastic form factor. These terms are of the percent order

and their logarithmic dependence upon mb cannot be extrapolated away from our data.

Nevertheless, in order to get the HQET Isgur-Wise function our non-perturbative results

for hB→B
+ (w) (given in table 1) can be further corrected by hand through the perturbative

β+(mb,mb;w) given in ref. [30] at next to leading order2.

2for a recent lattice calculation of the Isgur-Wise function see ref. [32]

– 15 –



J
H
E
P
1
0
(
2
0
0
7
)
0
6
2

i → f w σG σ+ σ−

1.00 1.000(00) 1.000(00)

1.03 0.999(01) 0.999(01)

D → D 1.05 0.997(02) 0.997(02)

1.10 0.993(03) 0.993(03)

1.20 0.985(05) 0.985(05)

1.00 1.000(00) 1.000(00)

1.03 0.997(02) 0.997(02)

B → B 1.05 0.996(02) 0.996(02)

1.10 0.991(04) 0.991(04)

1.20 0.981(09) 0.981(09)

1.00 1.002(02) 1.003(01) 0.89(16)

1.03 0.999(03) 1.000(02) 0.86(13)

B → D 1.05 0.996(04) 0.998(02) 0.83(11)

1.10 0.991(04) 0.993(03) 0.77(08)

1.20 0.980(05) 0.983(05) 0.72(08)

Table 5: First step, from L0 = 0.4 fm to L1 = 0.8 fm. Results corresponding to the definition D1.

Finally, we show in figure 10 our best result for the function ∆B→D(w) that enters in

the decay rate of the process B → Dτντ (see discussion at the end of section 2). ∆B→D(w)

does not show any significant dependence upon w and is very well approximated by its static

limit (see eq. 2.6). These findings represent a prediction that can be confirmed by a future

measurement of the differential decay rate of the process B → Dτντ . Indeed, the function

∆B→D(w) can be extracted experimentally by the ratio dΓB→Dτντ /dΓB→D(e,µ)νe,µ that does

not depend upon the CKM matrix element. On the other hand, the knowledge of ∆B→D(w)

is required in order to perform lepton-flavour universality checks on the extraction of Vcb.

7. Conclusions

We have performed the calculation of the form factors that parametrize semileptonic

transitions among pseudoscalar heavy-light mesons and made a prediction for the ratio

dΓB→Dτντ /dΓB→D(e,µ)νe,µ . In view of a future measurement of the differential decay rate

of the process B → Dτντ , our results will allow to perform lepton-flavour universality

checks on the extraction of Vcb.

The form factors have been obtained with a relative accuracy of the order of a few

percent allowing to establish the range of validity of the heavy quark effective theory for

these quantities. In particular we have obtained a check of the predictions of the Luke’s

theorem that we re-derived. The corrections to the static limit are very small already in

the case of the elastic form factor hD→D
+ and negligible in the case of hB→B

+ . We have

also established the accuracy of the static approximation to the form factors of the decay

B → Dℓν which is of the order of 2-3% at zero recoil and reaches about 7% at w = 1.2

where becomes definitely inadequate for precise phenomenological applications.

Our results have been obtained within the quenched approximation and further calcu-

lations will be needed to asses the corrections due to unquenching. On the other hand, the

accuracy reached in the quenched case demonstrates the feasibility and the opportunity of
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β T × L3 Ncnfg k θ

L1a 6.420 32 × 163 360 0.126600 0.000000

0.127400 1.603930

0.128030 2.080840

0.128650 2.978423

0.129500 4.311249

0.134304

0.134770

0.135221

L1b 5.960 16 × 83 480 0.118128 0.000000

0.119112 1.603930

0.120112 2.080840

0.121012 2.978423

0.122513 4.311249

0.131457

0.132335

0.133226

L2A 6.420 48 × 243 250 0.126600 0.000000

0.127400 2.405895

0.128030 3.121260

0.128650 4.467634

0.129500 6.200000

0.134304

0.134770

0.135221

L2B 5.960 24 × 123 592 0.118128 0.000000

0.119112 2.405895

0.120112 3.121260

0.121012 4.467634

0.122513 6.200000

0.131457

0.132335

0.133226

Table 6: Table of lattice simulations of the second step.

repeating the present calculation in the unquenched theory. Indeed, the recursive matching

process can be extended to the sea quark masses that, alternatively, can be kept to their

physical values if the Schrödinger Functional formalism is used. Moreover, flavour twisted

boundary conditions can be used for heavy valence quarks also in the Nf = 3 unquenched

theory. The real case will further differ by the heavy flavour determinants that can be

accounted for by a perturbative expansion in the hopping parameter.
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i → f w σG σ+ σ−

1.00 1.000(00) 1.000(00)

1.03 0.993(01) 0.993(01)

D → D 1.05 0.988(02) 0.988(02)

1.10 0.973(05) 0.973(05)

1.20 0.921(16) 0.921(16)

1.00 1.000(00) 1.000(00)

1.03 0.992(02) 0.992(02)

B → B 1.05 0.986(03) 0.986(03)

1.10 0.961(10) 0.961(10)

1.20 0.890(24) 0.890(24)

1.00 1.000(01) 1.000(01) 0.63(32)

1.03 0.992(02) 0.993(02) 0.65(25)

B → D 1.05 0.987(02) 0.988(02) 0.67(21)

1.10 0.972(05) 0.972(05) 0.65(21)

1.20 0.921(14) 0.921(14) 0.45(33)

Table 7: Second step, from L1 = 0.8 fm to L2 = 1.2 fm. Results corresponding to the definition

D1.
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